

Joint work with Charlotte Micheloud, Samuel Pawel and Fadoua Balabdaoui

O'Bayes 2022

University of California Santa Cruz, US

September 6, 2022

Introduction

The Sceptical p-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue

Replicability

- Replicability of research findings is crucial to the credibility of science.
- Large-scale replication projects have been conducted in the last years.
- Such efforts help to assess to what extent results from original studies can be confirmed in independent replication studies.

The Replicability of Psychological Science

Open Science Collaboration, 2015, *Science*

RESEARCH ARTICLE SUMMARY

PSYCHOLOGY

Estimating the reproducibility of psychological science

Open Science Collaboration*

Similar replication projects:

- Experimental Economics (2016)
- Social Sciences (2018)
- Experimental Philosophy (2018)
- Cancer Biology (2021)

Experimental Economics Replication Project

Camerer et al. (2016), Science

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

– Usually implemented requiring one-sided $p < \alpha = 0.025$ in two independent studies ("two-trials rule").

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided $p < \alpha = 0.025$ in two independent studies ("two-trials rule").
- \rightarrow Type-I error (T1E) rate is $\alpha^2 = 0.025^2 = 0.000625$

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided *p* < α = 0.025 in two independent studies ("two-trials rule").
- \rightarrow Type-I error (T1E) rate is $\alpha^2 = 0.025^2 = 0.000625$
 - However, "double dichotomisation" may not reflect the available evidence:

- $p_1 = p_2 = 0.024$ leads to claim of success.

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided *p* < α = 0.025 in two independent studies ("two-trials rule").
- \rightarrow Type-I error (T1E) rate is $\alpha^2 = 0.025^2 = 0.000625$
 - However, "double dichotomisation" may not reflect the available evidence:
 - $p_1 = p_2 = 0.024$ leads to claim of success.
 - $p_1 = 0.027$ and $p_2 = 0.006$ leads to no claim of success.

Example: Ambrus and Greiner (2012), Experimental Economics

Effect estimates with 95% confidence interval

- 1. Two-trials rule (one-sided)
- 2. Compatibility of effect estimates (Q-test): $p_Q = 0.65$
- 3. Meta-analysis of effect estimates (95% CI): [0.10, 0.41]

- Limitations of currently used methods:
 - Two-trials rule is based on "double dichotomisation"
 - Q-test provides no information about true effect
 - Meta-analysis assumes exchangeability

- Limitations of currently used methods:
 - Two-trials rule is based on "double dichotomisation"
 - Q-test provides no information about true effect
 - Meta-analysis assumes exchangeability
- I will describe two reverse-Bayes approaches
 - without "double dichotomisation"
 - without exchangeability assumptions
 - but with explicit penalisation of effect size shrinkage

- Limitations of currently used methods:
 - Two-trials rule is based on "double dichotomisation"
 - Q-test provides no information about true effect
 - Meta-analysis assumes exchangeability
- I will describe two reverse-Bayes approaches
 - without "double dichotomisation"
 - without exchangeability assumptions
 - but with explicit penalisation of effect size shrinkage
- 1. The sceptical *p*-value

- Limitations of currently used methods:
 - Two-trials rule is based on "double dichotomisation"
 - Q-test provides no information about true effect
 - Meta-analysis assumes exchangeability
- I will describe two reverse-Bayes approaches
 - without "double dichotomisation"
 - without exchangeability assumptions
 - but with explicit penalisation of effect size shrinkage
- 1. The sceptical *p*-value
- 2. The sceptical Bayes factor

Introduction

The Sceptical *p*-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue

Effect estimates with 95% confidence interval

Page 10

Effect estimates with 95% confidence interval

 $n_o = 36$ $n_r = 306$

A New Approach to Define Replication Success

J. R. Statist. Soc. A (2020)

A new standard for the analysis and design of replication studies

Leonhard Held

University of Zurich, Switzerland

[Read before The Royal Statistical Society at a meeting on 'Signs and sizes: understanding and replicating statistical findings' at the Society's 2019 annual conterence in Bellast on Wednesday, September 4th, 2019, the President, Professor D. Ashby, in the Chair]

- A Bayes/non-Bayes compromise based on
 - 1. Reverse-Bayes analysis
 - 2. Quantification of prior-data conflict

 \rightarrow The sceptical *p*-value *p*_S quantifies degree of replication success

Reverse-Bayes Analysis

Jack Good (1916-2009)

"We can make judgments of initial probabilities and infer final ones, or we can equally make judgments of final ones and infer initial ones by **Bayes's theorem in reverse**."

Good Thinking The Foundations of Probability and Its Applications

I. J. Good

Forward- and Reverse-Bayes

Forward- and Reverse-Bayes

Forward- and Reverse-Bayes

The Proposed Approach: Step 1

One-sided $\alpha = 2.5\%$

- Determine the variance τ^2 of a sceptical prior N(0, τ^2) that makes the original result no longer convincing.

Prior-Data Conflict

George Box (1919-2013)

"The process of scientific investigation involves not one but two kinds of inference: <u>estimation</u> and <u>criticism</u>, used iteratively and in alternation."

The Proposed Approach: Step 2

One-sided $\alpha = 2.5\%$

- Prior-data conflict is quantified based on the tail probability of the prior-predictive distribution: $p_{\text{Box}} = \Pr\{N(0, \tau^2 + \sigma_r^2) \ge \hat{\theta}_r\}.$

The Proposed Approach: Step 2

One-sided $\alpha = 2.5\%$

- Prior-data conflict is quantified based on the tail probability of the prior-predictive distribution: $p_{\text{Box}} = \Pr\{N(0, \tau^2 + \sigma_r^2) \ge \hat{\theta}_r\}.$
- Conflict between the sceptical prior and the replication effect estimate $(p_{Box} \le \alpha)$ defines replication success at level α .

One-sided $\alpha = 2.5\%$

No replication success at level $\alpha = 2.5\%$

One-sided $\alpha = 5\%$

No replication success at level $\alpha = 5\%$

One-sided $\alpha = 10\%$

No replication success at level $\alpha = 10\%$

One-sided $\alpha = 11\%$

Replication success at level $\alpha = 11\%$

One-sided $\alpha = 11\%$

Replication success at level $\alpha = 11\%$

The smallest level α where $p_{Box} \leq \alpha$ is the sceptical *p*-value p_{S}
- always exists, fulfills $p_S > \max\{p_o, p_r\}$

- always exists, fulfills $p_{S} > \max\{p_{o}, p_{r}\}$
- does not depend on α

- always exists, fulfills $p_{S} > \max\{p_{o}, p_{r}\}$
- does not depend on α
- can be computed analytically under standard normality assumptions

- always exists, fulfills $p_S > \max\{p_o, p_r\}$
- does not depend on α
- can be computed analytically under standard normality assumptions
- depends on both *z*-values z_o and z_r (resp. *p*-values p_o and p_r) and the relative sample size $c = n_r/n_o$:

$$p_{S} = 1 - \Phi(|z_{S}|) \text{ where}$$

$$z_{S}^{2} = \begin{cases} z_{H}^{2}/2 & \text{for } c = 1 \\ \frac{z_{A}^{2}}{c-1} \left\{ \sqrt{1 + (c-1)z_{H}^{2}/z_{A}^{2}} - 1 \right\} & \text{for } c \neq 1 \end{cases}$$

where z_A^2 and z_H^2 is the arithmetic resp. harmonic mean of z_o^2 and z_r^2 .

Replication Success in Terms of Relative Effect Size

Goal: Comparison of

- sceptical *p*-value
- two-trials rule
- meta-analysis

Replication Success in Terms of Relative Effect Size

Goal: Comparison of

- sceptical *p*-value
- two-trials rule
- meta-analysis

Key: Formulation in terms of

- original *p*-value *p*_o
- relative effect size $d = \hat{ heta}_r/\hat{ heta}_o$
- relative sample size $c = n_r/n_o$

The Annals of Applied Statistics 2022, Vol. 16, No. 2, 706–720 https://doi.org/10.1214/21-AOAS1502 © Institute of Mathematical Statistics, 2022

THE ASSESSMENT OF REPLICATION SUCCESS BASED ON RELATIVE EFFECT SIZE

BY LEONHARD HELD^a, CHARLOTTE MICHELOUD^b AND SAMUEL PAWEL^c

Epidemiology, Biostatistics and Prevention Institute, Center for Reproducible Science, University of Zurich, ^aleonhard.held@uzh.ch,^bcharlotte.micheloud@uzh.ch,^csamuel.pawel@uzh.ch

Recalibration

Problem:

Nominal sceptical *p*-value is too stringent: Replication success is impossible for borderline significant original studies ($p_o \approx \alpha$).

Recalibration

Problem:

Nominal sceptical *p*-value is too stringent: Replication success is impossible for borderline significant original studies ($p_o \approx \alpha$).

Solution: Golden recalibration to

$$p_{\rm S} = 1 - \Phi(\sqrt{\varphi} |z_{\rm S}|)$$

where $\varphi = (\sqrt{5} + 1)/2 \approx 1.62$

is the golden ratio.

Nominal vs. Golden Sceptical P-Value

For a borderline convincing original result ($p_o \approx 0.025$), replication success

- is impossible with nominal $p_{\rm S}$

Nominal vs. Golden Sceptical P-Value

For a borderline convincing original result ($p_o \approx 0.025$), replication success

- is impossible with nominal $p_{\rm S}$
- is possible with golden *p*_S, if there is no effect size shrinkage.

Replication Projects

Proportion of successful replications

Project	Sample size	Two-trials rule (%)	Sceptical p-value (%)
Psychology	73	28.8	30.1
Social Sciences	21	61.9	52.4
Experimental Philosophy	31	74.2	71.0
Experimental Economics	18	55.6	55.6

Proportion of successful replications with the two-trials rule and the golden sceptical *p*-value ($\alpha = 2.5\%$)

When Do They Disagree?

Study	Project	с	d	po	p _r	p _S
Schmidt and Besner (2008)	Psychology	2.58	1.28	0.028	< 0.0001	0.024
Oberauer (2008)	Psychology	0.60	0.67	0.0003	0.035	0.017
Payne et al. (2008)	Psychology	2.65	0.41	0.001	0.023	0.031
Balafoutas and Sutter (2012)	Social Sciences	3.48	0.52	0.009	0.011	0.04
Pyc and Rawson (2010)	Social Sciences	9.18	0.38	0.011	0.004	0.061
Nichols (2006)	Experimental Philosophy	9.40	0.49	0.015	0.0006	0.049

*p*_S: golden sceptical *p*-value

When Do They Disagree?

Study	Project	с	d	p _o	p _r	p _S
Schmidt and Besner (2008)	Psychology	2.58	1.28	0.028	< 0.0001	0.024
Oberauer (2008)	Psychology	0.60	0.67	0.0003	0.035	0.017
Payne et al. (2008)	Psychology	2.65	0.41	0.001	0.023	0.031
Balafoutas and Sutter (2012)	Social Sciences	3.48	0.52	0.009	0.011	0.04
Pyc and Rawson (2010)	Social Sciences	9.18	0.38	0.011	0.004	0.061
Nichols (2006)	Experimental Philosophy	9.40	0.49	0.015	0.0006	0.049

*p*_S: golden sceptical *p*-value

Sceptical *p*-value

- does not require both studies to be significant

When Do They Disagree?

Study	Project	с	d	p _o	p _r	p _S
Schmidt and Besner (2008)	Psychology	2.58	1.28	0.028	< 0.0001	0.024
Oberauer (2008)	Psychology	0.60	0.67	0.0003	0.035	0.017
Payne et al. (2008)	Psychology	2.65	0.41	0.001	0.023	0.031
Balafoutas and Sutter (2012)	Social Sciences	3.48	0.52	0.009	0.011	0.04
Pyc and Rawson (2010)	Social Sciences	9.18	0.38	0.011	0.004	0.061
Nichols (2006)	Experimental Philosophy	9.40	0.49	0.015	0.0006	0.049

*p*_S: golden sceptical *p*-value

Sceptical *p*-value

- does not require both studies to be significant
- penalizes shrinkage

How Best to Quantify Replication Success?

ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Research

Cite this artide: Muradchanian J, Hoekstra R, Kiers H, van Ravenzwaaij D. 2021 How best to quantify replication success? A simulation study on the comparison of replication success metrics. *R. Soc. Open Sci.* 8: 201697. https://doi.org/10.1098/rssc.201697 How best to quantify replication success? A simulation study on the comparison of replication success metrics

Jasmine Muradchanian, Rink Hoekstra, Henk Kiers and

Don van Ravenzwaaij

Behavioural and Social Sciences, University of Groningen, The Netherlands

"The sceptical p-value performed particularly well under scenarios of high publication bias."

Replication Success under Questionable Research Practices

Replication success under questionable research practices – a simulation study

Francesca Freuli* Leonhard Held^{\dagger} Rachel Heyard^{\ddagger}

https://osf.io/preprints/metaarxiv/s4b65/

Metric of interest: - TTR - golden sceptical-p - controlled sceptical-p - meta-analysis

Strategy: -- adaptive -- fixed

Application to Social Sciences Replication Project

Study	$\hat{\theta}_r/\hat{\theta}_o$	n _r /n _o	p _o	<i>p</i> _r	ps	ρ _s
Hauser et al. (2014), Nature	1.00	0.50	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Aviezer et al. (2012), Science	0.60	0.90	< 0.0001	< 0.0001	0.0003	< 0.0001
Wilson et al. (2014), Science	0.80	1.30	< 0.0001	< 0.0001	0.002	0.0001
Derex et al. (2013), Nature	0.60	1.30	< 0.0001	0.001	0.01	0.002
Karpicke and Blunt (2011), Science	0.60	1.20	< 0.0001	0.003	0.012	0.002
Janssen et al. (2010), Science	0.50	0.60	< 0.0001	0.013	0.017	0.003
Gneezy et al. (2014), Science	0.80	2.30	0.001	0.0001	0.019	0.004
Kovacs et al. (2010), Science	1.40	4.40	0.013	< 0.0001	0.03	0.009
Morewedge et al. (2010), Science	0.80	3.00	0.004	0.0003	0.036	0.011
Duncan et al. (2012), Science	0.60	7.40	0.002	< 0.0001	0.036	0.011
Nishi et al. (2015), Nature	0.60	2.40	0.002	0.005	0.046	0.016
Balafoutas and Sutter (2012), Science	0.50	3.50	0.009	0.011	0.085	0.04
Pyc and Rawson (2010), Science	0.40	9.20	0.011	0.004	0.11	0.061
Rand et al. (2012), Nature	0.20	6.30	0.004	0.12	0.19	0.13
Ackerman et al. (2010), Science	0.20	11.70	0.024	0.063	0.21	0.15
Sparrow et al. (2011), Science	0.10	3.50	0.0009	0.23	0.24	0.19
Shah et al. (2012), Science	-0.10	11.60	0.023	0.65	0.63	0.66
Kidd and Castano (2013), Science	-0.10	8.60	0.006	0.77	0.72	0.77
Gervais and Norenzayan (2012), Science	-0.10	9.80	0.014	0.79	0.73	0.78
Lee and Schwarz (2010), Science	-0.10	7.60	0.006	0.78	0.74	0.79
Ramirez and Beilock (2011), Science	-0.10	4.50	< 0.0001	0.80	0.79	0.85

Introduction

The Sceptical p-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue

Overall Type-I Error Rate

Success probability over both studies under the null hypothesis

Overall Type-I Error Rate

Success probability over both studies under the null hypothesis

Relative sample size c

Can we achieve exact overall T1E control for all values of c?

Overall Type-I Error Rate

Success probability over both studies under the null hypothesis

Relative sample size c

Can we achieve exact overall T1E control for all values of c? \rightarrow Controlled sceptical *p*-value

The Harmonic Mean χ^2 Test: c = 1

Suppose $z_o^2, z_r^2 \stackrel{\text{iid}}{\sim} \chi^2(1)$. We need the null distribution of

$$z_{\rm S}^2 = z_{\rm H}^2/2 = 1/(1/z_o^2 + 1/z_r^2)$$

 $\rightarrow z_{\rm S}^2$ has a Ga(1/2, 2) null distribution with cdf $F_1(.)$

 $\rightarrow p = 1 - F_1(z_S^2)$ has exact T1E control.

Leonhard Held University of Zurich, Switzerland

The Case $c \neq 1$

Null distribution of
$$z_{S}^{2} = \frac{Z_{A}^{2}}{c-1} \left\{ \sqrt{1+(c-1)Z_{H}^{2}/Z_{A}^{2}} - 1 \right\}$$
 required

- z_A^2 and z_H^2 are dependent, but z_A^2 and z_H^2/z_A^2 are independent
- \rightarrow cdf $F_c(.)$ of z_s^2 is available with one-dimensional numerical integration:

 $\rightarrow p = 1 - F_c(z_s^2)$ has exact T1E control.

A New Family of Combination Tests

Type I error control at $\alpha^2 = 0.025^2$

A Statistical Framework for Replicability Leonhard Held*, Charlotte Micheloud* and Fadoua Balabdaoui* *University of Zurich Epidemiology, Biostatistics and Prevention Institute (EBPI) and Center for Reproducible Science (CRS) Hirschengraben 84, 8001 Zurich, Switzerland and ⁺ETH Zurich Seminar für Statistik Rämistrasse 101, 8092 Zürich, Switzerland 4th July 2022 https://arxiv.org/abs/2207.00464

Minimum Relative Effect Size

Threshold for replication success on relative effect size $d = \hat{\theta}_r / \hat{\theta}_o$

P-value Function and Confidence Interval

- Consider the generalized *z*-statistic

$$z_i(\mu) = rac{\hat{ heta}_i - \mu}{\sigma_i} \qquad i \in \{o, r\}$$

for the null hypothesis $H_0: \theta = \mu$.

- The *z*-values $z_o(\mu)$ and $z_r(\mu)$ are now used to compute $z_s^2(\mu)$.
- \rightarrow A *p*-value function can be computed:

$$p(\mu) = 1 - F_c(z_S^2(\mu))$$

- Exact confidence intervals can be derived.

Ambrus and Greiner (2012)

c = 3.22, one-sided $p_S = 0.024$

Ambrus and Greiner (2012) Forest plot

Ambrus and Greiner (2012) original replication skeptical meta-analysis -0.50 -0.25 0.00 0.25 0.50 μ

Kessler and Roth (2012)

c = 0.16, one-sided $p_s = 0.003$

Kessler and Roth (2012)

Forest plot

de Clippel et al. (2014)

c = 0.99, one-sided $p_S < 0.0001$

de Clippel et al. (2014) Forest plot

DOI: 10.1111/rssb.12491

ORIGINAL ARTICLE

The sceptical Bayes factor for the assessment of replication success

Samuel Pawel[®] | Leonhard Held[®]

Main idea

DOI: 10.1111/rssb.12491

ORIGINAL ARTICLE

The sceptical Bayes factor for the assessment of replication success

Samuel Pawel[®] | Leonhard Held[®]

Main idea

1. Determine sceptical prior so that the original finding is no longer convincing in terms of the Bayes factor (Pericchi, 2020; Consonni, 2019)

DOI: 10.1111/rssb.12491

ORIGINAL ARTICLE

The sceptical Bayes factor for the assessment of replication success

Samuel Pawel[®] | Leonhard Held[®]

Main idea

- 1. Determine sceptical prior so that the original finding is no longer convincing in terms of the Bayes factor (Pericchi, 2020; Consonni, 2019)
- 2. Assess prior-data conflict of replication data and sceptical prior by contrasting it to an advocacy prior (posterior of effect size based on original study + flat prior) with another Bayes factor (Box, 1980)

Bayes factor $BF_{0S}(\hat{\theta}_o; \tau^2)$ for original data

$$H_0: \theta = 0$$
 vs. $H_S: \theta \sim N(0, \tau^2)$

Page 41

Bayes factor $BF_{0S}(\hat{\theta}_o; \tau^2)$ for original data

$$H_0: \theta = 0$$
 vs. $H_S: \theta \sim N(0, \tau^2)$

 \rightarrow Reverse-Bayes step:

Choose $\tau^2 = \tau_{\gamma}^2$ such that evidence for H_0 is at level γ

Bayes factor $BF_{0S}(\hat{\theta}_o; \tau^2)$ for original data

$$H_0: \theta = 0$$
 vs. $H_S: \theta \sim N(0, \tau^2)$

 \rightarrow Reverse-Bayes step:

Choose $\tau^2 = \tau_{\gamma}^2$ such that evidence for H_0 is at level γ

Bayes factor $BF_{SA}(\hat{\theta}_r; \tau^2)$ for replication data

 $H_{\mathsf{S}}: \theta \sim \mathrm{N}(0, \tau^2)$ vs. $H_{\mathsf{A}}: \theta \sim \mathrm{N}(\hat{\theta}_o, \sigma_o^2)$

Page 41

Bayes factor $\mathsf{BF}_{\mathsf{SA}}(\hat{\theta}_r;\tau^2)$ for replication data

$$H_{\mathsf{S}}: \theta \sim \mathrm{N}(\mathbf{0}, \tau^2)$$
 vs. $H_{\mathsf{A}}: \theta \sim \mathrm{N}(\hat{\theta}_o, \sigma_o^2)$

 \rightarrow Replication success at level γ :

 $\mathsf{BF}_{\mathsf{SA}}(\hat{ heta}_r; au_\gamma^2) \leq \gamma$

Bayes factor $BF_{SA}(\hat{\theta}_r; \tau^2)$ for replication data

$$H_{\mathsf{S}}: \theta \sim \mathrm{N}(\mathbf{0}, \tau^2)$$
 vs. $H_{\mathsf{A}}: \theta \sim \mathrm{N}(\hat{\theta}_o, \sigma_o^2)$

 \rightarrow Replication success at level γ :

 $\mathsf{BF}_{\mathsf{SA}}(\hat{\theta}_r; \tau_{\gamma}^2) \leq \gamma$

Bayes factor $BF_{SA}(\hat{\theta}_r; \tau^2)$ for replication data

 $H_{S}: \theta \sim N(0, \tau^{2})$ vs. $H_{A}: \theta \sim N(\hat{\theta}_{o}, \sigma_{o}^{2})$ \rightarrow Sceptical Bayes factor BF_S: Smallest level γ at which BF_{SA} $(\hat{\theta}_{r}; \tau_{\gamma}^{2}) \leq \gamma$

The Sceptical Bayes Factor

Some properties

- Closed-form expression available when $\sigma_o = \sigma_r$ (involving Lambert W function)
- Cannot be smaller than the minimum Bayes factor from the original study
 - \rightarrow limited by the evidence from the original study
- BF_S depends on $Q = (\hat{ heta}_r \hat{ heta}_o)^2 / (\sigma_o^2 + \sigma_r^2)$ statistic
 - \rightarrow takes into account effect size compatibility
- Connected to the replication Bayes factor (Verhagen and Wagenmakers, 2014)
- BF_s may not exist

Application to Social Sciences Replication Project

Study	$\hat{\theta}_r/\hat{\theta}_o$	n _r /n _o	po	pr	ps	ρ _s	BFS
Hauser et al. (2014), Nature	1.00	0.50	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 1/1000
Aviezer et al. (2012), Science	0.60	0.90	< 0.0001	< 0.0001	0.0003	< 0.0001	1/78
Wilson et al. (2014), Science	0.80	1.30	< 0.0001	< 0.0001	0.002	0.0001	1/45
Derex et al. (2013), Nature	0.60	1.30	< 0.0001	0.001	0.01	0.002	1/8.5
Karpicke and Blunt (2011), Science	0.60	1.20	< 0.0001	0.003	0.012	0.002	1/5.6
Janssen et al. (2010), Science	0.50	0.60	< 0.0001	0.013	0.017	0.003	1/1.6
Gneezy et al. (2014), Science	0.80	2.30	0.001	0.0001	0.019	0.004	1/6.9
Kovacs et al. (2010), Science	1.40	4.40	0.013	< 0.0001	0.03	0.009	1/3.2
Morewedge et al. (2010), Science	0.80	3.00	0.004	0.0003	0.036	0.011	1/3.9
Duncan et al. (2012), Science	0.60	7.40	0.002	< 0.0001	0.036	0.011	1/3.1
Nishi et al. (2015), Nature	0.60	2.40	0.002	0.005	0.046	0.016	1/2.5
Balafoutas and Sutter (2012), Science	0.50	3.50	0.009	0.011	0.085	0.04	1/1.6
Pyc and Rawson (2010), Science	0.40	9.20	0.011	0.004	0.11	0.061	1/1.2
Rand et al. (2012), Nature	0.20	6.30	0.004	0.12	0.19	0.13	
Ackerman et al. (2010), Science	0.20	11.70	0.024	0.063	0.21	0.15	
Sparrow et al. (2011), Science	0.10	3.50	0.0009	0.23	0.24	0.19	
Shah et al. (2012), Science	-0.10	11.60	0.023	0.65	0.63	0.66	
Kidd and Castano (2013), Science	-0.10	8.60	0.006	0.77	0.72	0.77	
Gervais and Norenzayan (2012), Science	-0.10	9.80	0.014	0.79	0.73	0.78	
Lee and Schwarz (2010), Science	-0.10	7.60	0.006	0.78	0.74	0.79	
Ramirez and Beilock (2011), Science	-0.10	4.50	< 0.0001	0.80	0.79	0.85	

Application to Social Sciences Replication Project

-

Study	$\hat{\theta}_r/\hat{ heta}_o$	n _r /n _o	po	pr	ps	ρ _s	BFS
Hauser et al. (2014), Nature	1.00	0.50	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 1/1000
Aviezer et al. (2012), Science	0.60	0.90	< 0.0001	< 0.0001	0.0003	< 0.0001	1/78
Wilson et al. (2014), Science	0.80	1.30	< 0.0001	< 0.0001	0.002	0.0001	1/45
Derex et al. (2013), Nature	0.60	1.30	< 0.0001	0.001	0.01	0.002	1/8.5
Karpicke and Blunt (2011), Science	0.60	1.20	< 0.0001	0.003	0.012	0.002	1/5.6
Janssen et al. (2010), Science	0.50	0.60	< 0.0001	0.013	0.017	0.003	1/1.6
Gneezy et al. (2014), Science	0.80	2.30	0.001	0.0001	0.019	0.004	1/6.9
Kovacs et al. (2010), Science	1.40	4.40	0.013	< 0.0001	0.03	0.009	1/3.2
Morewedge et al. (2010), Science	0.80	3.00	0.004	0.0003	0.036	0.011	1/3.9
Duncan et al. (2012), Science	0.60	7.40	0.002	< 0.0001	0.036	0.011	1/3.1
Nishi et al. (2015), Nature	0.60	2.40	0.002	0.005	0.046	0.016	1/2.5
Balafoutas and Sutter (2012), Science	0.50	3.50	0.009	0.011	0.085	0.04	1/1.6
Pyc and Rawson (2010), Science	0.40	9.20	0.011	0.004	0.11	0.061	1/1.2
Rand et al. (2012), Nature	0.20	6.30	0.004	0.12	0.19	0.13	
Ackerman et al. (2010), Science	0.20	11.70	0.024	0.063	0.21	0.15	
Sparrow et al. (2011), Science	0.10	3.50	0.0009	0.23	0.24	0.19	
Shah et al. (2012), Science	-0.10	11.60	0.023	0.65	0.63	0.66	
Kidd and Castano (2013), Science	-0.10	8.60	0.006	0.77	0.72	0.77	
Gervais and Norenzayan (2012), Science	-0.10	9.80	0.014	0.79	0.73	0.78	
Lee and Schwarz (2010), Science	-0.10	7.60	0.006	0.78	0.74	0.79	
Ramirez and Beilock (2011), Science	-0.10	4.50	< 0.0001	0.80	0.79	0.85	

Janssen et al. (2010): $Q = 3.51 \rightarrow$ replication effect estimate is in conflict with advocacy prior

Introduction

The Sceptical p-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue

Discussion

Reverse-Bayes methods

- enable formalization of scepticism
- can be implemented with different measures of evidence
- require both studies to be convincing
- take into account effect size compatibility

Discussion

Reverse-Bayes methods

- enable formalization of scepticism
- can be implemented with different measures of evidence
- require both studies to be convincing
- take into account effect size compatibility

The methods

- can also be used for sample size calculations
- can include heterogeneity between studies
- can be extended to more than two replication studies

"These days the statistician is often asked such questions as

'Are you a Bayesian?'

"These days the statistician is often asked such questions as

'Are you a Bayesian?'

"These days the statistician is often asked such questions as

'Are you a Bayesian?' 'Are you a frequentist?'

"These days the statistician is often asked such questions as

'Are you a Bayesian?' 'Are you a frequentist?' 'Are you a data scientist?'

"These days the statistician is often asked such questions as

'Are you a Bayesian?' 'Are you a frequentist?' 'Are you a data scientist?' 'Are you a designer of experiments?'

"These days the statistician is often asked such questions as

'Are you a Bayesian?' 'Are you a frequentist?' 'Are you a data scientist?' 'Are you a designer of experiments?'

I will argue that the appropriate answer to <u>all</u> these questions can be (and preferably should be) "yes", and that we can see why this is so if we consider the scientific context of what statisticians do."

George Box (1983)

"These days the statistician is often asked such questions as

'Are you a Bayesian?' 'Are you a frequentist?' 'Are you a data analyst?' 'Are you a designer of experiments?'

I will argue that the appropriate answer to <u>all</u> these questions can be (and preferably should be) "yes", and that we can see why this is so if we consider the scientific context of what statisticians do."

