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Replicability

– Replicability of research findings is crucial to the credibility of science.
– Large-scale replication projects have been conducted in the last years.
– Such efforts help to assess to what extent results from original studies can be

confirmed in independent replication studies.
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The Replicability of Psychological Science
Open Science Collaboration, 2015, Science

Similar replication projects:
– Experimental Economics (2016)
– Social Sciences (2018)
– Experimental Philosophy (2018)
– Cancer Biology (2021)
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Experimental Economics Replication Project
Camerer et al. (2016), Science
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Replication is Standard in Drug Regulation

– FDA/EMA requires

“at least two adequate and well-controlled studies, each
convincing on its own, to establish effectiveness.”

– Usually implemented requiring one-sided p < α = 0.025 in two independent
studies (“two-trials rule”).

→ Type-I error (T1E) rate is α2 = 0.0252 = 0.000625
– However, “double dichotomisation” may not reflect the available evidence:

– p1 = p2 = 0.024 leads to claim of success.
– p1 = 0.027 and p2 = 0.006 leads to no claim of success.
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Example: Ambrus and Greiner (2012), Experimental Economics
Effect estimates with 95% confidence interval
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θ̂=0.25
θ̂o=0.32 po=0.027

θ̂r=0.23 pr=0.006

1. Two-trials rule (one-sided) �

2. Compatibility of effect estimates (Q-test): pQ = 0.65 �

3. Meta-analysis of effect estimates (95% CI): [0.10, 0.41] �
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Assessement of Replication Success

– Limitations of currently used methods:
– Two-trials rule is based on “double dichotomisation”
– Q-test provides no information about true effect
– Meta-analysis assumes exchangeability

– I will describe two reverse-Bayes approaches
– without “double dichotomisation”
– without exchangeability assumptions
– but with explicit penalisation of effect size shrinkage

1. The sceptical p-value
2. The sceptical Bayes factor
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Example: Pyc and Rawson (2010), Social Sciences
Effect estimates with 95% confidence interval

no = 36 nr = 306
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A New Approach to Define Replication Success

– A Bayes/non-Bayes compromise based on
1. Reverse-Bayes analysis
2. Quantification of prior-data conflict

→ The sceptical p-value pS quantifies degree of replication success
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Reverse-Bayes Analysis
Jack Good (1916-2009)

“We can make judgments of initial probabilities and infer final
ones, or we can equally make judgments of final ones and infer
initial ones by Bayes’s theorem in reverse.”
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Forward- and Reverse-Bayes

f (data | θ)f (θ) f (θ | data)

Reverse-Bayes
inference

Forward-Bayes
inference

Bayesian updating

Bayesian downdating
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The Proposed Approach: Step 1
One-sided α = 2.5%
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Reverse−Bayes analysis

– Determine the variance τ 2 of a sceptical prior N(0, τ 2) that makes the original
result no longer convincing.
The smallest level α where replication success is achieved defines the sceptical
p-value pS
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Prior-Data Conflict
George Box (1919-2013)

“The process of scientific investigation involves not one but two
kinds of inference: estimation and criticism, used iteratively and
in alternation.”
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The Proposed Approach: Step 2
One-sided α = 2.5%
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Reverse−Bayes analysis Assessing prior−data conflict

– Prior-data conflict is quantified based on the tail probability of the
prior-predictive distribution: pBox = Pr{N(0, τ 2 + σ2

r ) ≥ θ̂r}.

– Conflict between the sceptical prior and the replication effect estimate
(pBox ≤ α) defines replication success at level α.
The smallest level α where replication success is achieved defines the sceptical
p-value pS.
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The Proposed Approach
One-sided α = 5%
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The Proposed Approach
One-sided α = 10%
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The Proposed Approach
One-sided α = 11%
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The Sceptical p-Value

– always exists, fulfills pS > max{po, pr}

– does not depend on α

– can be computed analytically under standard normality assumptions
– depends on both z-values zo and zr (resp. p-values po and pr) and the relative

sample size c = nr/no:

pS = 1 − Φ(|zS|) where

z2
S =


z2

H/2 for c = 1

z2
A

c−1

{√
1 + (c − 1)z2

H/z2
A − 1

}
for c ̸= 1

where z2
A and z2

H is the arithmetic resp. harmonic mean of z2
o and z2

r .
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Replication Success in Terms of Relative Effect Size

Goal: Comparison of
– sceptical p-value
– two-trials rule
– meta-analysis

Key: Formulation in terms of
– original p-value po

– relative effect size d = θ̂r/θ̂o

– relative sample size c = nr/no
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Replication Success Regions
Relative sample size c = 0.5
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Replication Success Regions
Relative sample size c = 1
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Replication Success Regions
Relative sample size c = 2
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Replication Success Regions
Relative sample size c = 5
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Replication Success Regions
Relative sample size c = 10
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Replication Success Regions
Relative sample size c = 1000
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Recalibration

Problem:
Nominal sceptical p-value is too stringent: Replication success is impossible for
borderline significant original studies (po ≈ α).

Solution:
Golden recalibration to

pS = 1 − Φ(
√
φ |zS|)

where φ = (
√

5 + 1)/2 ≈ 1.62

is the golden ratio.
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Nominal vs. Golden Sceptical P-Value
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Replication Projects
Proportion of successful replications

Project Sample size Two-trials rule (%) Sceptical p-value (%)

Psychology 73 28.8 30.1
Social Sciences 21 61.9 52.4
Experimental Philosophy 31 74.2 71.0
Experimental Economics 18 55.6 55.6

Proportion of successful replications with the two-trials rule and the golden sceptical p-value (α = 2.5%)
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When Do They Disagree?

Study Project c d po pr pS

Schmidt and Besner (2008) Psychology 2.58 1.28 0.028 < 0.0001 0.024
Oberauer (2008) Psychology 0.60 0.67 0.0003 0.035 0.017
Payne et al. (2008) Psychology 2.65 0.41 0.001 0.023 0.031
Balafoutas and Sutter (2012) Social Sciences 3.48 0.52 0.009 0.011 0.04
Pyc and Rawson (2010) Social Sciences 9.18 0.38 0.011 0.004 0.061
Nichols (2006) Experimental Philosophy 9.40 0.49 0.015 0.0006 0.049

pS: golden sceptical p-value

Sceptical p-value
– does not require both studies to be significant
– penalizes shrinkage
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How Best to Quantify Replication Success?

“The sceptical p-value performed particularly well under
scenarios of high publication bias.”
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Replication Success under Questionable Research Practices

https://osf.io/preprints/metaarxiv/s4b65/
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Application to Social Sciences Replication Project

Study θ̂r/θ̂o nr/no po pr pS p̃S

Hauser et al. (2014), Nature 1.00 0.50 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Aviezer et al. (2012), Science 0.60 0.90 < 0.0001 < 0.0001 0.0003 < 0.0001
Wilson et al. (2014), Science 0.80 1.30 < 0.0001 < 0.0001 0.002 0.0001
Derex et al. (2013), Nature 0.60 1.30 < 0.0001 0.001 0.01 0.002
Karpicke and Blunt (2011), Science 0.60 1.20 < 0.0001 0.003 0.012 0.002
Janssen et al. (2010), Science 0.50 0.60 < 0.0001 0.013 0.017 0.003
Gneezy et al. (2014), Science 0.80 2.30 0.001 0.0001 0.019 0.004
Kovacs et al. (2010), Science 1.40 4.40 0.013 < 0.0001 0.03 0.009
Morewedge et al. (2010), Science 0.80 3.00 0.004 0.0003 0.036 0.011
Duncan et al. (2012), Science 0.60 7.40 0.002 < 0.0001 0.036 0.011
Nishi et al. (2015), Nature 0.60 2.40 0.002 0.005 0.046 0.016
Balafoutas and Sutter (2012), Science 0.50 3.50 0.009 0.011 0.085 0.04
Pyc and Rawson (2010), Science 0.40 9.20 0.011 0.004 0.11 0.061
Rand et al. (2012), Nature 0.20 6.30 0.004 0.12 0.19 0.13
Ackerman et al. (2010), Science 0.20 11.70 0.024 0.063 0.21 0.15
Sparrow et al. (2011), Science 0.10 3.50 0.0009 0.23 0.24 0.19
Shah et al. (2012), Science -0.10 11.60 0.023 0.65 0.63 0.66
Kidd and Castano (2013), Science -0.10 8.60 0.006 0.77 0.72 0.77
Gervais and Norenzayan (2012), Science -0.10 9.80 0.014 0.79 0.73 0.78
Lee and Schwarz (2010), Science -0.10 7.60 0.006 0.78 0.74 0.79
Ramirez and Beilock (2011), Science -0.10 4.50 < 0.0001 0.80 0.79 0.85
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Introduction

The Sceptical p-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue
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Overall Type-I Error Rate
Success probability over both studies under the null hypothesis

Relative sample size c
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Can we achieve exact overall T1E control for all values of c?
→ Controlled sceptical p-value

Page 28



Overall Type-I Error Rate
Success probability over both studies under the null hypothesis

Relative sample size c

Ty
pe

−
I e

rr
or

 r
at

e 
(in

 %
)

0.5 1.0 2.0 5.0 10.0

0.85

two−trials rule
golden
nominal

0.25

0

0.025

0.05

0.075

0.0022

0.051

0.0625

Can we achieve exact overall T1E control for all values of c?

→ Controlled sceptical p-value

Page 28



Overall Type-I Error Rate
Success probability over both studies under the null hypothesis

Relative sample size c

Ty
pe

−
I e

rr
or

 r
at

e 
(in

 %
)

0.5 1.0 2.0 5.0 10.0

0.85

two−trials rule
golden
nominal

0.25

0

0.025

0.05

0.075

0.0022

0.051

0.0625

Can we achieve exact overall T1E control for all values of c?
→ Controlled sceptical p-value

Page 28



The Harmonic Mean χ2 Test: c = 1

Suppose z2
o, z2

r
iid∼ χ2(1). We need the null distribution of

z2
S = z2

H/2 = 1/(1/z2
o + 1/z2

r )

→ z2
S has a Ga(1/2, 2) null distribution with cdf F1(.)

→ p = 1 − F1(z2
S) has exact T1E control.
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The Case c ̸= 1

Null distribution of z2
S =

z2
A

c − 1

{√
1 + (c − 1)z2

H/z2
A − 1

}
required

– z2
A and z2

H are dependent, but z2
A and z2

H/z2
A are independent

→ cdf Fc(.) of z2
S is available with one-dimensional numerical integration:
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→ p = 1 − Fc(z2
S) has exact T1E control.
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A New Family of Combination Tests
Type I error control at α2 = 0.0252

https://arxiv.org/abs/2207.00464
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Minimum Relative Effect Size

Threshold for replication success on relative effect size d = θ̂r/θ̂o
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P-value Function and Confidence Interval

– Consider the generalized z-statistic

zi(µ) =
θ̂i − µ

σi
i ∈ {o, r}

for the null hypothesis H0: θ = µ.
– The z-values zo(µ) and zr(µ) are now used to compute z2

S(µ).
→ A p-value function can be computed:

p(µ) = 1 − Fc(z2
S(µ))

– Exact confidence intervals can be derived.
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Ambrus and Greiner (2012)
c = 3.22, one-sided pS = 0.024
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min p = 0.66 Q−test: p = 0.65 c = 3.22 two−sided p = 0.002
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Ambrus and Greiner (2012)
Forest plot
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Kessler and Roth (2012)
c = 0.16, one-sided pS = 0.003
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Kessler and Roth (2012)
Forest plot
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de Clippel et al. (2014)
c = 0.99, one-sided pS < 0.0001
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de Clippel et al. (2014)
Forest plot
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Reverse-Bayes Assessment of Replication Studies with Bayes Factors

Main idea

1. Determine sceptical prior so that the original finding is no longer convincing in
terms of the Bayes factor (Pericchi, 2020; Consonni, 2019)

2. Assess prior-data conflict of replication data and sceptical prior by contrasting it
to an advocacy prior (posterior of effect size based on original study + flat prior)
with another Bayes factor (Box, 1980)
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Reverse-Bayes Assessment of Replication Studies with Bayes Factors

Bayes factor BF0S(θ̂o; τ
2) for original data

H0 : θ = 0 vs. HS : θ ∼ N(0, τ 2)

Relative sceptical prior variance τ2 σo
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Reverse-Bayes Assessment of Replication Studies with Bayes Factors

Bayes factor BFSA(θ̂r; τ
2) for replication data

HS : θ ∼ N(0, τ 2) vs. HA : θ ∼ N(θ̂o, σ
2
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Reverse-Bayes Assessment of Replication Studies with Bayes Factors

Bayes factor BFSA(θ̂r; τ
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Reverse-Bayes Assessment of Replication Studies with Bayes Factors

Bayes factor BFSA(θ̂r; τ
2) for replication data

HS : θ ∼ N(0, τ 2) vs. HA : θ ∼ N(θ̂o, σ
2
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→ Sceptical Bayes factor BFS: Smallest level γ at which BFSA(θ̂r; τ
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The Sceptical Bayes Factor

Some properties
– Closed-form expression available when σo = σr (involving Lambert W function)
– Cannot be smaller than the minimum Bayes factor from the original study
→ limited by the evidence from the original study

– BFS depends on Q = (θ̂r − θ̂o)
2/(σ2

o + σ2
r ) statistic

→ takes into account effect size compatibility
– Connected to the replication Bayes factor (Verhagen and Wagenmakers, 2014)
– BFS may not exist
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Application to Social Sciences Replication Project

Study θ̂r/θ̂o nr/no po pr pS p̃S BFS

Hauser et al. (2014), Nature 1.00 0.50 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 1/1000
Aviezer et al. (2012), Science 0.60 0.90 < 0.0001 < 0.0001 0.0003 < 0.0001 1/78
Wilson et al. (2014), Science 0.80 1.30 < 0.0001 < 0.0001 0.002 0.0001 1/45
Derex et al. (2013), Nature 0.60 1.30 < 0.0001 0.001 0.01 0.002 1/8.5
Karpicke and Blunt (2011), Science 0.60 1.20 < 0.0001 0.003 0.012 0.002 1/5.6
Janssen et al. (2010), Science 0.50 0.60 < 0.0001 0.013 0.017 0.003 1/1.6
Gneezy et al. (2014), Science 0.80 2.30 0.001 0.0001 0.019 0.004 1/6.9
Kovacs et al. (2010), Science 1.40 4.40 0.013 < 0.0001 0.03 0.009 1/3.2
Morewedge et al. (2010), Science 0.80 3.00 0.004 0.0003 0.036 0.011 1/3.9
Duncan et al. (2012), Science 0.60 7.40 0.002 < 0.0001 0.036 0.011 1/3.1
Nishi et al. (2015), Nature 0.60 2.40 0.002 0.005 0.046 0.016 1/2.5
Balafoutas and Sutter (2012), Science 0.50 3.50 0.009 0.011 0.085 0.04 1/1.6
Pyc and Rawson (2010), Science 0.40 9.20 0.011 0.004 0.11 0.061 1/1.2
Rand et al. (2012), Nature 0.20 6.30 0.004 0.12 0.19 0.13
Ackerman et al. (2010), Science 0.20 11.70 0.024 0.063 0.21 0.15
Sparrow et al. (2011), Science 0.10 3.50 0.0009 0.23 0.24 0.19
Shah et al. (2012), Science -0.10 11.60 0.023 0.65 0.63 0.66
Kidd and Castano (2013), Science -0.10 8.60 0.006 0.77 0.72 0.77
Gervais and Norenzayan (2012), Science -0.10 9.80 0.014 0.79 0.73 0.78
Lee and Schwarz (2010), Science -0.10 7.60 0.006 0.78 0.74 0.79
Ramirez and Beilock (2011), Science -0.10 4.50 < 0.0001 0.80 0.79 0.85

Janssen et al. (2010): Q = 3.51 → replication effect estimate is in conflict with advocacy prior

Page 43



Application to Social Sciences Replication Project

Study θ̂r/θ̂o nr/no po pr pS p̃S BFS

Hauser et al. (2014), Nature 1.00 0.50 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 1/1000
Aviezer et al. (2012), Science 0.60 0.90 < 0.0001 < 0.0001 0.0003 < 0.0001 1/78
Wilson et al. (2014), Science 0.80 1.30 < 0.0001 < 0.0001 0.002 0.0001 1/45
Derex et al. (2013), Nature 0.60 1.30 < 0.0001 0.001 0.01 0.002 1/8.5
Karpicke and Blunt (2011), Science 0.60 1.20 < 0.0001 0.003 0.012 0.002 1/5.6
Janssen et al. (2010), Science 0.50 0.60 < 0.0001 0.013 0.017 0.003 1/1.6
Gneezy et al. (2014), Science 0.80 2.30 0.001 0.0001 0.019 0.004 1/6.9
Kovacs et al. (2010), Science 1.40 4.40 0.013 < 0.0001 0.03 0.009 1/3.2
Morewedge et al. (2010), Science 0.80 3.00 0.004 0.0003 0.036 0.011 1/3.9
Duncan et al. (2012), Science 0.60 7.40 0.002 < 0.0001 0.036 0.011 1/3.1
Nishi et al. (2015), Nature 0.60 2.40 0.002 0.005 0.046 0.016 1/2.5
Balafoutas and Sutter (2012), Science 0.50 3.50 0.009 0.011 0.085 0.04 1/1.6
Pyc and Rawson (2010), Science 0.40 9.20 0.011 0.004 0.11 0.061 1/1.2
Rand et al. (2012), Nature 0.20 6.30 0.004 0.12 0.19 0.13
Ackerman et al. (2010), Science 0.20 11.70 0.024 0.063 0.21 0.15
Sparrow et al. (2011), Science 0.10 3.50 0.0009 0.23 0.24 0.19
Shah et al. (2012), Science -0.10 11.60 0.023 0.65 0.63 0.66
Kidd and Castano (2013), Science -0.10 8.60 0.006 0.77 0.72 0.77
Gervais and Norenzayan (2012), Science -0.10 9.80 0.014 0.79 0.73 0.78
Lee and Schwarz (2010), Science -0.10 7.60 0.006 0.78 0.74 0.79
Ramirez and Beilock (2011), Science -0.10 4.50 < 0.0001 0.80 0.79 0.85

Janssen et al. (2010): Q = 3.51 → replication effect estimate is in conflict with advocacy prior

Page 43



Introduction

The Sceptical p-Value

Type-I Error Control

The Sceptical Bayes Factor

Discussion and Epilogue

Page 44



Discussion

Reverse-Bayes methods
– enable formalization of scepticism
– can be implemented with different measures of evidence
– require both studies to be convincing
– take into account effect size compatibility

The methods
– can also be used for sample size calculations
– can include heterogeneity between studies
– can be extended to more than two replication studies
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Epilogue: Are You a Bayesian?

George Box (1983)

“These days the statistician is often asked
such questions as

’Are you a Bayesian?’

’Are you a frequentist?’

’Are you a designer of experiments?’

I will argue that the appropriate answer to all
these questions can be (and preferably should
be) “yes”, and that we can see why this is so
if we consider the scientific context of what
statisticians do.”
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